

larvi 2013

6th fish & shellfish larviculture symposium

Maria de Lourdes Cobo Barcia

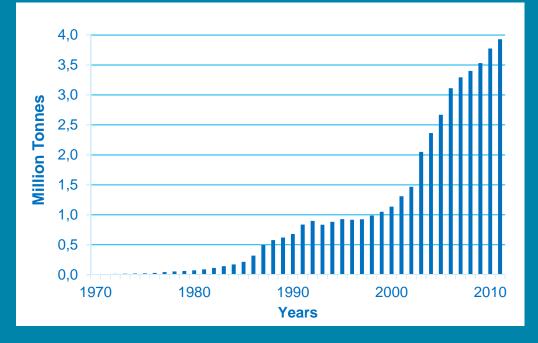
ghent university, belgium, 2-5 september 2013

INTENSIFICATION OF WHITE SHRIMP Litopenaeus vannamei (Boone) Larviculture

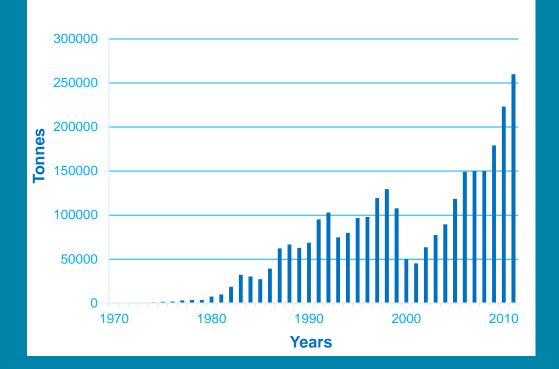
María de Lourdes Cobo Barcia

R. Wouters, M. Wille, S. Sonnenholzner, J. Calderón & P. Sorgeloos

Laboratory of Aquaculture & Artemia Reference Center


Penaeus monodon

Litopenaeus vannamei

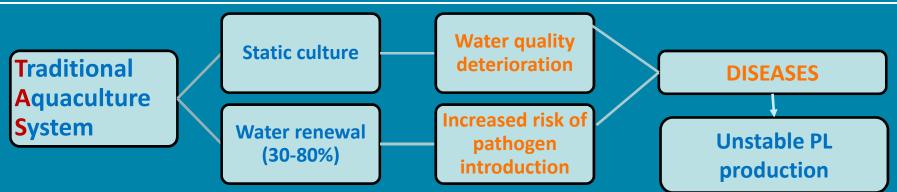

Marine shrimp 4 million tonnes USD 18 billion

L. vannamei 3 million tonnes USD 12 billion

FAO, 2013

L. vannamei aquaculture production in Ecuador

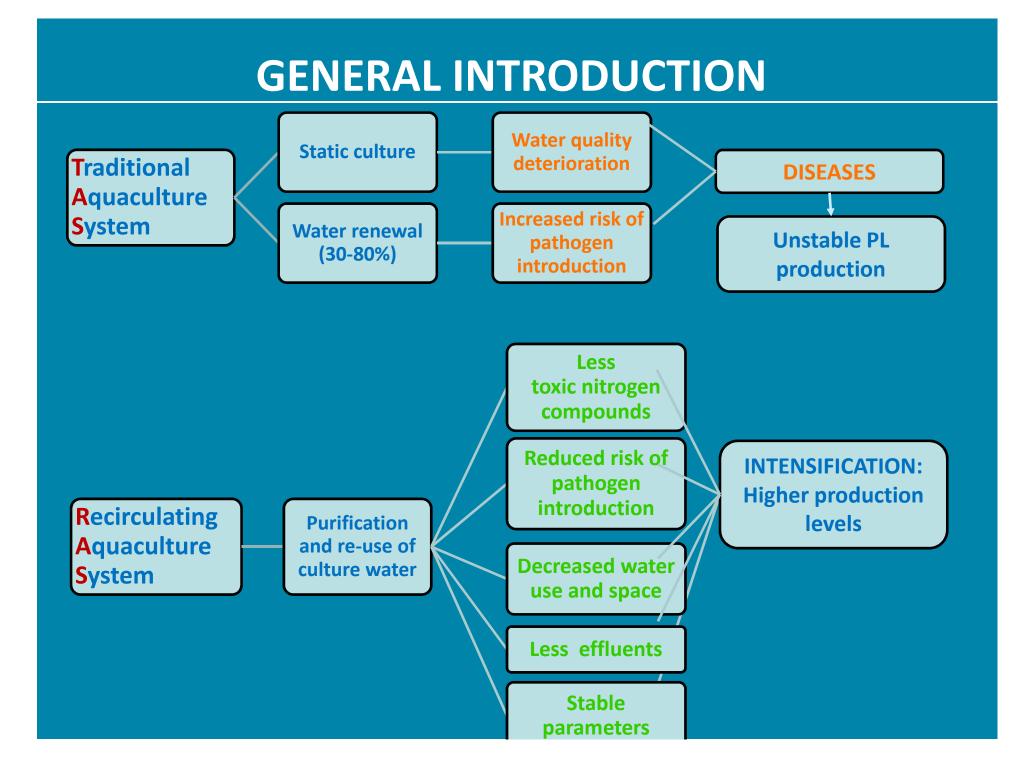
FAO, 2013


Top ten regional aquaculture producers in America

Country	Tonnes	Percentage
Chile	701 062	27.21
United States of America	495 499	19.23
Brazil	479 399	18.61
Ecuador	271 919	10.55
Canada	160 924	6.25
Mexico	126 240	4.90
Peru	89 021	3.46
Colombia	80 367	3.12
Cuba	31 422	1.22
Honduras	27 509	1.07
Other	113 067	4.39
Total	2 576 428	100

Reliable supply of shrimp larvae: quantity and quality

> 200 hatcheries
 > 60 billion PL year⁻¹



In fish culture Recirculating Aquaculture System (RAS) are used

Could it be possible to use RAS in shrimp larviculture ?

OBJECTIVE OF THIS STUDY

To develop a new technique for the intensive culture of *Litopenaeus vannamei* larvae through the use of a RAS

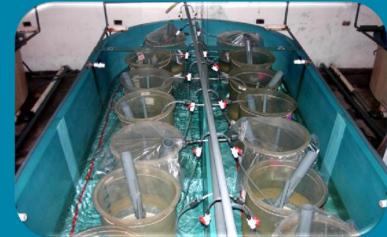
Intensification of *L. vannamei* larviculture in an EXPERIMENTAL-SCALE RAS Intensification of *L. vannamei* larviculture in a PILOT-SCALE RAS

> Improvement of Intensification through feeding regime in a PILOT-SCALE RAS

EXPERIMENTAL-SCALE RAS

To develop a new technique for the intensive culture of *Litopenaeus vannamei* larvae through the use of a RAS

Intensification of *L. vannamei* larviculture in an EXPERIMENTAL-SCALE RAS


> Evaluate the effect of super-high stocking densities, water recirculation and feeding strategies on larviculture performance

N5 – Z3 STATIC PHASE

Т (°С)	32 ± 1
Salinity (g L ⁻¹)	34
Oxygen (mg L ⁻¹)	> 4

Z3 – PL1 RECIRCULATION (RAS)

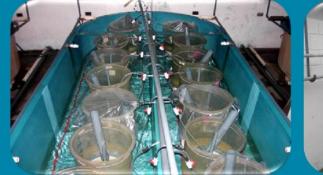
ESPOL – CENAIM feeding protocol (100 larvae L⁻¹)

				Larval	Stages				
	N5	Z1	Z2	Z3	M1	M2	M3	PL1	PL2
Chaetoceros gracilis				-					
Tetraselmis sp.									
Enriched rotifers									
Artemia nauplii									
Formulated liquid diet									
Formulated dry diets (2)	•								
Concentrates	000	na.com @						Provinence A	

100 um

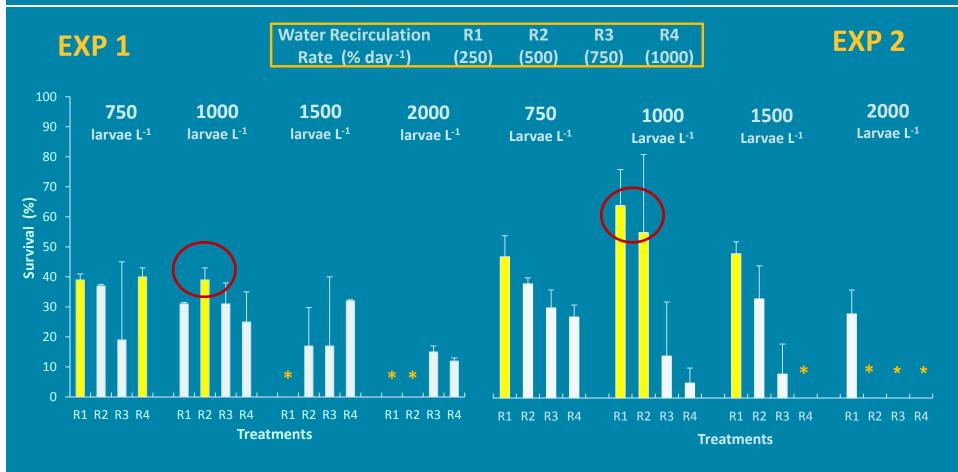
Probiotic Vibrio alginolyticus

Static phase


	Stocking Density (larvae L ⁻¹)	Feeding strategy
Experiment 1	750	ESPOL - CENAIM 's protocol
	1000	
	1500	
	2000	
Experiment 2	750	Continuous supply of algae
	1000	Same concentration of algae
	1500	irrespective of stocking densities
	2000	
Experiment 3	1000	Continuous supply of algae
	2000	either at low or high concentrations

RESULTS: Performance in Static phase

EXPERIMENT	1			
Stocking density (larvae L ⁻¹)	Microalgae concentration (10 ³ cells mL ⁻¹)	Survival (%)	Dry weight (mg larvae L ⁻¹)	Larval Stage Index
750	60 - 160	61 ± 2 ^{ab}	0.034 ± 0.004 ^a	3.09 ± 0.00 ^a
1000	60 - 160	67 ± 7ª	0.028 ± 0.001 ª	3.17 ± 0.03 ª
1500	60 - 160	53 ± 8 ^{ab}	0.027 ± 0.002 ^a	3.03 ± 0.05 ª
2000	60 - 160	51 ± 3 ^b	0.025 ± 0.006 ^a	3.09± 0.04 ª
EXPERIMENT	100	50 ± 6 ^b	0.060 ± 0.010ª	2.71 ± 0.05 ^a
750	100	50 ± 6 ^b	0.060 ± 0.010ª	2.71 ± 0.05 ª
1000	100	89 ± 10ª	0.041 ± 0.004 ^a	2.90 ± 0.02 ^a
1500	100	52 ± 6 ^b	0.041 ± 0.003 ª	2.70 ± 0.06 ^a
2000	100	78 ± 5ª	0.032 ± 0.002ª	2.80 ± 0.05 ^a
EXPERIMENT 3	3			
1000	100	88 ± 3ª	0.031 ± 0.002^{b}	3.42 ± 0.15 ^{ab}
1000	200	84 ± 8 ª	0.045 ± 0.001ª	3.84 ± 0.06ª
2000	400	61 ± 8 ^b	0.031 ± 0.001^{b}	2.99 ± 0.01^b
2000	700	82 ± 10 ª	0.037 ± 0.001 ^b	3.58 ± 0.17 ^a


RAS

	Density	Water Recirculation	
Experiment	(larvae L ⁻¹)	Rate (% day -1)	Feeding strategy
Experiment 1	750	250	Live food ration increased with
	1000	500	different factors to account for
	1500	750	increasing stocking densities
	2000	1000	
Experiment 2	750	250	Formulated feed increased
	1000	500	with different factors to
	1500	750	account for increasing water
	2000	1000	recirculation rate
Experiment 3	1000	500	Same as in experiment 2
	2000	1000	

RESULTS: SURVIVAL RAS

Density: p<0.05; Water recirculation rate: NS; D x WRR: NS Density: NS ; Water recirculation rate: p<0.05; D x WRR: NS

CONCLUSIONS

STATIC CULTURE

- Continuous feeding and higher concentrations of microalgae increased:
 - Survival for 1000 larvae L⁻¹
 and 2000 larvae L⁻¹
- High survival for density 1000 larvae L⁻¹ in all experiments

EXPERIMENTAL RAS

- Increasing stocking densities affected negatively survival and growth
- Water recirculation rates higher than 500% day⁻¹ does not improve survival or growth
- High survival for combination 1000 larvae L⁻¹ and 500% day⁻¹ in all experiments

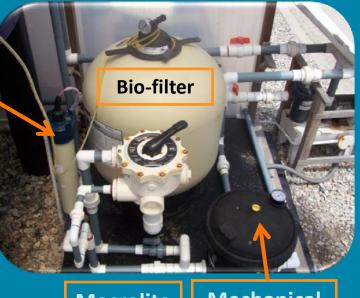
OBJECTIVE OF THIS STUDY

To develop a new technique for the intensive culture of *Litopenaeus vannamei* larvae through the use of a RAS

Intensification of *L. vannamei* larviculture in an EXPERIMENTAL-SCALE RAS Intensification of *L. vannamei* larviculture in a PILOT-SCALE RAS

Improvement of Intensification through feeding regime in a PILOT-SCALE RAS

To evaluate the effects of intensification on larval performance with different feeding regimes in a PILOT-SCALE RAS


UV

PILOT- SCALE RAS

Automatic feeder

Macrolite

Mechanical Filter

Traditional (TAS)

Stocking density: 100 N5 L⁻¹

Water exchange starts at Z3 with a rate of 30% day⁻¹

RAS

Stocking density: 1000 N5 L⁻¹

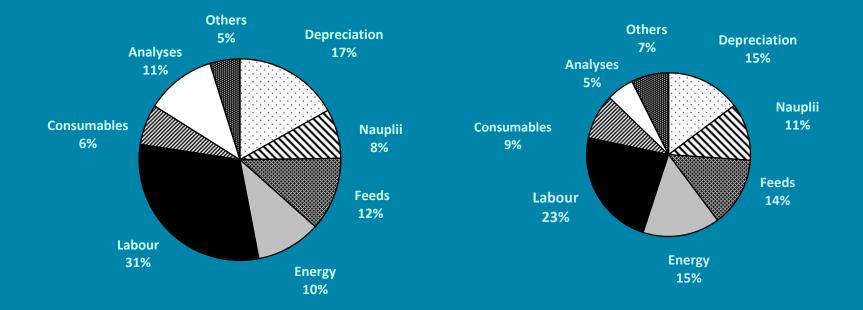
Recirculation starts at Z3 with a rate of 500% day⁻¹

Feeding regimes for Pilot-scale RAS

RAS	
C. gracilis (concentrate)	
Enriched rotifers	90
Artemia nauplii	
Formulated dry diet (1)	
RAS	_
C. gracilis (concentrate)	
Umbrella-stage Artemia	
Artemia naupliii	Var.
Formulated drv diet (1)	

RESULTS: LARVAL PERFORMANCE

Culture system	Survival (%)	Dry weight (mg larvae ⁻¹)	Larval Stage Index	Biomass (g)	
TAS	62 ± 8 ^a	0.170 ± 0.020 ª	7.50 ± 0.20ª	55.0 ± 4.0 ^b	
RAS	50 ± 7ª	0.090 ± 0.010^{b}	6.70 ± 0.20^{b}	304.0 ± 5.0 ª	
		_			
TAS	71 ± 5 ª	0.130 ± 0.020 ^a	6.92 ± 0.03 ^a	55.7 ± 12.1 ^b	



RAS 74 ± 6^{a} 0.110 ± 0.010^{a} 6.82 ± 0.02^{a} 411.0 ± 12.0^{a}

RESULTS: COST ANALYSIS

Traditional (TAS)

RAS

Total Running cost 30% lower for RAS

RESULTS: Postlarvae condition

Nursery culture: 160 PL25 m⁻²

_	Culture System			
Parameters	TAS	RAS		
Survival (%)	89 ± 7ª	83 ± 3 ª		
Dry weight (g larvae ⁻¹)	0.026 ± 0.010 ^a	0.024 ± 0.010 ^a		
Lenght (mm)	18.46 ± 2.52 ª	19.03 ± 2.11 ª		
Biomass (g)	18.81 ± 2.83ª	17.19 ± 3.24ª		

Grow-out culture: 9 ponds of 0.25ha, 12 PL25 m⁻²

	Weight	Survival	Yield
	(g)	(%)	(kg ha ⁻¹)
Mean	9.15	59.61	657.77
StDev	0.55	6.34	90.26

CONCLUSIONS

- Umbrella stage-Artemia in RAS increased: survival dry weight biomass
- Running cost 30 % lower in RAS compared to TAS
- Postlarvae produced in RAS performed similarly than those produced in TAS during subsequent nursery culture
- Postlarvae produced in RAS performed well in grow-out ponds with 60% survival and a yield of 658 kg ha⁻¹

RESULTS: WATER QUALITY

Culture system	Culture period	TAN (mg L ⁻¹)	N-NO ₂ (mg L ⁻¹)	N-NO ₃ (mg L ⁻¹)	
TAS	Initial	0.03 ± 0.02	0.001 ± 0.001	0.540 ± 0.030	
	Final	1.30 ± 0.04ª	0.070 ± 0.010 ^b	3.250 ± 0.200 ^a	Contraction of the second seco
RAS	Initial	0.07 ± 0.02	0.001 ± 0.001	0.140 ± 0.020	20
	Final	0.34 ± 0.21 ^b	0.420 ± 0.220ª	1.900 ± 0.700^{b}	\$
TAS	Initial	0.02 ± 0.02	0.009 ± 0.002	0.651 ± 0.020ª	
	Final	2.23 ± 0.22^{b}	0.010 ± 0.006^{b}	2.297 ± 0.028 ª	
RAS	Initial	0.0	0.0	0.112 ± 0.010^{b}	A
	Final	3.39 ± 0.39 ª	0.191 ± 0.054 ^a	1.950 ± 0.628 ^b	